SEMION | SYSTEM

Ion Energy, Ion Flux and Uniformity Analysis

World leading Retarding Field Energy Analyser (RFEA) technology

Measures

- Ion Energy Distribution
- Ion flux
- Positive/negative ion/electron analysis
- Average Ion Energy
- Electrode Voltage (Vdc)
- Uniformity*

Functionality

- Time averaged
- Time resolved**
- Time trend

Features

- Up to 13 measurement points
- Replaceable button probe sensors
- Custom sensor holder plates
- Fully automated software
- USB 2.0 as standard

*Semion Multi only

**Limited applications

The Semion *Retarding Field Energy Analyser (RFEA)* system measures the uniformity of ion energies hitting a surface using an array of integrated sensors.

The Semion Multi Sensor is primarily used for researching wafer uniformity in industrial plasma applications, but it also finds applications in research. Users in the semiconductor community are concerned with the uniformity of ion interactions with the substrate and this holds true for coatings, etching, plasma sputtering, PECVD and ion beam applications.

With ever increasing substrate sizes, plasma uniformity becomes increasingly critical. The Semion Multi Sensor saves time and confirms plasma uniformity models, which is essential in the development of plasma tools and for materials research.

Note: Time resolved functionality can be used when the plasma is pulsed and the Semion Sensor is mounted on a grounded or floating electrode.

Measuring Parameters (Range)

Ion Energy 2000 - V_{dc} (eV)

Ion Flux Range*

0.001 to 3 (A m⁻²) Low Standard 0.01 to 50 (A m⁻²) High 0.1 to 700 (A m⁻²) **IEDF** Resolution ± 1 eV nominal

Probe Bias Conditions

Max RF Bias Voltage 1 kV (peak-to-peak)

Max DC Bias Voltage -1940 V

Bias Frequency Range

(Time Averaged Measurements)

Bias Frequency Range (Time Resolved Measurements)

0 Hz to 100 kHz

Time Resolution* 100 µs

*For pulsed plasmas with Semion mounted on grounded or floating electrode

100 kHz to 80 MHz

RFEA Probe

Number of Sensors (Button probes) 1 to 13 **Probe Configuration** 4-grid RFEA Button Probe Diameter 33 mm

Holder Plate Diameter 50mm to 450mm, custom available on request

Holder Thickness Maximum Operating Temperature

RFEA Holder Plate mounted on electrode Mounting Button Probe and Holder Aluminium or anodized Aluminium, stainless Plate Material steel and ceramic (Al₂O₃) on request

RFEA Holder Plate Assembly

Cable Length

650 mm standard, custom on request

Feed-through Assembly

CF40 standard, custom on request Flange Type

Semion Control Unit Electronics

-2 kV to 2kV Grid Voltage Range **Current Range** -1 mA to +1 mA USB 2.0 Connectivity

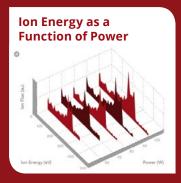
SYNC Signal Specification TTL (0 V to 5 V Square Wave)

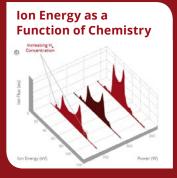
Application Software

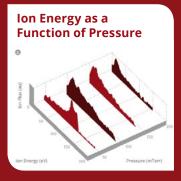
Windows 200 | XP | Vista | Operating System Windows 7 | Windows 8

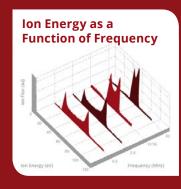
Operating Parameters

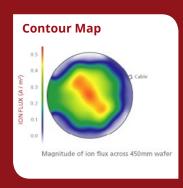
Pressure (Pascal | Torr) 0.1 to 40 Pa | 0 to 300 mTorr*


Density Ranges (Ar at 3 eV):


Low 1.2×10^{12} to 7.4×10^{15} Standard $2.0 \times 10^{13} \text{ to } 1.2 \times 10^{17}$ $2.7 \times 10^{14} \text{ to } 1.6 \times 10^{18}$ High


RFEA Holder Plate Assembly


The Holder Plate Assembly can be mounted on a grounded or biased electrode and is used to hold the replaceable button probe sensor. The holder is available in a number of materials including aluminium, anodised aluminium and stainless steel with custom materials available.



^{*}Choice dependent on plasma density

^{*}dependent on ion mean free path